
1

Lecture 10: Designing
interfaces

CS 211 Spring 2006
Andrew Myers

Lecture 10, CS 211 Spring 2006 2

Announcements
 A3 due in 6 days

 Focus: implementation, not documentation

 Special topics section on automatic
garbage collection: Hollister 306, 2:30

 Last time:
 Writing specifications
 Using Javadoc
 Programming advice

 Today’s topics:
 ADT Design
 More programming advice

Lecture 10, CS 211 Spring 2006 3

How to design an ADT
 Example: “Rope”

 A heavier-weight string
 Supports efficient concatenation

 Concatenation: a + b

 On String, takes time proportional to string length (copying)
 Rope is useful for constructing long strings, e.g. web pages

1. ADT overview
2. Choose operations
3. Specify operations
4. Choose representation
5. Identify invariants
6. Implement operations

 + =

Lecture 10, CS 211 Spring 2006 4

ADT overview

/** A Rope is a mutable string of characters.
It supports efficient concatenation. */

interface Rope {
…

}

Lecture 10, CS 211 Spring 2006 5

Mutable vs. immutable
 Mutable abstractions have state that can

be updated
 Immutable abstractions can’t be changed

after creation

 Mutable: arrays, ArrayList
 Immutable: int, String

 x = 2; updates the variable x, doesn’t change “2”

 Rule of thumb: immutable is usually easier
to program with correctly

Lecture 10, CS 211 Spring 2006 6

Choosing operations
 Interface should have enough operations

for clients to do what they want
 Efficiently

 Interface should avoid adding operations
that few clients need and that are easily
implemented.

 narrow vs. wide interfaces
 Narrow => simple, client and implementation loosely

coupled

2

Lecture 10, CS 211 Spring 2006 7

Operations
create()
create(String s)
String toString()
char get(int i)
void put(int i, char c)
Rope concat(Rope r)
int size()
substr, trim, equals…

• Creators:

Create a new ADT
value. (Often
constructors)

• Observers:

Return information but
have no side effects

• Mutators:

Change the state of the
ADT: have side effects

• Side effects are hard to reason about ⇒ make operations
observers or creators when possible.

• Avoid mixing different kinds of operations

“xx” + “yy” =>
Rope(“xx”).concat(Rope(“yy”))

Lecture 10, CS 211 Spring 2006 8

Specs
/** Create a new empty rope. */
Rope()

/** Create a Rope containing
 the same characters as s. */
Rope(String s)

/** Return a string containing
the same characters as this. */
String toString()

/** return the i’th character. Requires? */
char get(int i)

/** change the i’th character to c. Modifies: this. */
void put(int i, char c)

/** Concatenate two strings.
 * @return the concatenation of this and that. */
Rope concat(Rope that)

Lecture 10, CS 211 Spring 2006 9

Representation
 Idea: represent rope as a tree with strings
at leaves.
class Branch implements Rope {
 // Represents the concatenation of left and right.
 Rope left, Rope right;
 int length;
}
class Leaf implements Rope {

// Represents the same strings as chars
String chars;

}

 To concatenate: create a new Branch object.

Lecture 10, CS 211 Spring 2006 10

Identify rep invariants
class Branch implements Rope {
 // Represents the concatenation of left and right.
 // invariant: length is the sum of the lengths of
 // left and right.
 Rope left, Rope right;

 int length;
}
class Leaf implements Rope {

// Represents the same string of
// characters as chars.
String chars;

}

Lecture 10, CS 211 Spring 2006 11

Implementation
 (see source files)
 Need a third class Ropes to hold creators,

as static methods.
 Leaf and Branch can be encapsulated in package

Lecture 10, CS 211 Spring 2006 12

Non-Javadoc clauses
 Requires: condition

 States things that must be true for an operation to be
used

 Violating condition is the fault of the caller
 Implementation may check the condition and throw

exception but does not promise to.

 Modifies: description of objects
 Describes what objects may be mutated by operation
 Helpful for reasoning about side effects

 Checks: condition
 Like requires, but implementation promises to throw

an exception (can use @throw clause for this.)

